192 research outputs found

    Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004.

    Get PDF
    The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy

    DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides.

    Get PDF
    One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus

    Indirect influence in social networks as an induced percolation phenomenon

    Get PDF
    Significance Increasing empirical evidence in diverse social and ecological systems has shown that indirect interactions play a pivotal role in shaping systems’ dynamical behavior. Our empirical study on collaboration networks of scientists further reveals that an indirect effect can dominate over direct influence in behavioral spreading. However, almost all models in existence focus on direct interactions, and the general impact of indirect interactions has not been studied. We propose a new percolation process, termed induced percolation, to characterize indirect interactions and find that indirect interactions raise a plethora of new phenomena, including the wide range of possible phase transitions. Such an indirect mechanism leads to very different spreading outcomes from that of direct influences

    Rethinking Closed-loop Training for Autonomous Driving

    Full text link
    Recent advances in high-fidelity simulators have enabled closed-loop training of autonomous driving agents, potentially solving the distribution shift in training v.s. deployment and allowing training to be scaled both safely and cheaply. However, there is a lack of understanding of how to build effective training benchmarks for closed-loop training. In this work, we present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents, such as how to design traffic scenarios and scale training environments. Furthermore, we show that many popular RL algorithms cannot achieve satisfactory performance in the context of autonomous driving, as they lack long-term planning and take an extremely long time to train. To address these issues, we propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead and exploits cheaply generated imagined data for efficient learning. Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines. For more information, visit the project website: https://waabi.ai/research/travlComment: ECCV 202

    Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    Get PDF
    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6β€…kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa

    Analysis of geothermal potential in Hangjiahu area based on remote sensing and geographic information system

    Get PDF
    Geothermal resources are one of the most valuable renewable energy sources because of their stability, reliability, cleanliness, safety and abundant reserves. Efficient and economical remote sensing and GIS (Geographic Information System) technology has high practical value in geothermal resources exploration. However, different study areas have different geothermal formation mechanisms. In the process of establishing the model, which factors are used for modeling and how to quantify the factors reasonably are still problems to be analyzed and studied. Taking Hangjiahu Plain of Zhejiang Province as an example, based on geothermal exploration and remote sensing interpretation data, the correlation between the existing geothermal hot spots and geothermal related factors was evaluated in this paper, such as lithology, fault zone distance, surface water system and its distance, seismic point distance, magmatic rock and volcanic rock distance, surface water, farmland, woodland temperature and so on. The relationship between geothermal potential and distribution characteristics of surface thermal environment, fault activity, surface water system and other factors was explored. AHP (Analytic Hierarchy Process) and BP (Back Propagation) neural network were used for establishing geothermal potential target evaluation models. The potential geothermal areas of Hangjiahu Plain were divided into five grades using geothermal exploration model, and most geothermal drilling sites were distributed in extremely high potential areas and high potential areas. The results show that it is feasible to analyze geothermal potential targets using remote sensing interpretation data and geographic information system analysis databased on analytic hierarchy process analytic hierarchy process and back propagation neural network, and the distribution characteristics of surface thermal environment, fault activity, surface water system and other related factors are also related to geothermal distribution. The prediction results of the model coincide with the existing geothermal drilling sites, which provides a new idea for geothermal exploration

    A Load Switching Group based Feeder-level Microgrid Energy Management Algorithm for Service Restoration in Power Distribution System

    Full text link
    This paper presents a load switching group based energy management system (LSG-EMS) for operating microgrids on a distribution feeder powered by one or multiple grid-forming distributed energy resources. Loads on a distribution feeder are divided into load switching groups that can be remotely switched on and off. The LSG-EMS algorithm, formulated as a mixed-integer linear programming (MILP) problem, has an objective function of maximizing the served loads while minimizing the total number of switching actions. A new set of topology constraints are developed for allowing multiple microgrids to be formed on the feeder and selecting the optimal supply path. Customer comfort is accounted for by maximizing the supply duration in the customer preferred service period and enforcing a minimum service duration. The proposed method is demonstrated on a modified IEEE 33-bus system using actual customer data. Simulation results show that the LSG-EMS successfully coordinates multiple grid-forming sources by selecting an optimal supply topology that maximizes the supply period of both the critical and noncritical loads while minimizing customer service interruptions in the service restoration process.Comment: 5 pages, 7 figures, submitted to 2021 IEEE PES General Meetin

    A Novel Feeder-level Microgrid Unit Commitment Algorithm Considering Cold-load Pickup, Phase Balancing, and Reconfiguration

    Full text link
    This paper presents a novel 2-stage microgrid unit commitment (Microgrid-UC) algorithm considering cold-load pickup (CLPU) effects, three-phase load balancing requirements, and feasible reconfiguration options. Microgrid-UC schedules the operation of switches, generators, battery energy storage systems, and demand response resources to supply 3-phase unbalanced loads in an islanded microgrid for multiple days. A performance-based CLPU model is developed to estimate additional energy needs of CLPU so that CLPU can be formulated into the traditional 2-stage UC scheduling process. A per-phase demand response budget term is added to the 1st stage UC objective function to meet 3-phase load unbalance limits. To reduce computational complexity in the 1st stage UC, we replace the spanning tree method with a feasible reconfiguration topology list method. The proposed algorithm is developed on a modified IEEE 123-bus system and tested on the real-time simulation testbed using actual load and PV data. Simulation results show that Microgrid-UC successfully accounts for CLPU, phase imbalance, and feeder reconfiguration requirements.Comment: 10 pages, submitted to IEEE Transactions on Smart Gri
    • …
    corecore