110 research outputs found

    Machine Learning Interpretability of Outer Radiation Belt Enhancement \& Depletion Events

    Full text link
    We investigate the response of outer radiation belt electron fluxes to different solar wind and geomagnetic indices using an interpretable machine learning method. We reconstruct the electron flux variation during 19 enhancement and 7 depletion events and demonstrate a feature attribution analysis on the superposed epoch results for the first time. We find that the intensity and duration of the substorm sequence following an initial dropout determine the overall enhancement or depletion of electron fluxes, while the solar wind pressure drives the initial dropout in both types of events. Further statistical results from a dataset with 71 events confirm this and show a significant correlation between the resulting flux levels and the average AL index, indicating that the observed "depletion" event can be more accurately described as a "non-enhancement" event. Our novel SHAP-Enhanced Superposed Epoch Analysis (SHESEA) method can be used as an insight discovery tool in various physical systems

    Opening the Black Box of the Radiation Belt Machine Learning Model

    Full text link
    Many Machine Learning (ML) systems, especially neural networks, are fundamentally regarded as black boxes since it is difficult to grasp how they function once they have been trained. Here, we tackle the issue of the interpretability of a high-accuracy ML model created to model the flux of Earth's radiation belt electrons. The Outer RadIation belt Electron Neural net model (ORIENT) uses only solar wind conditions and geomagnetic indices as input. Using the Deep SHAPley additive explanations (DeepSHAP) method, we show that the `black box' ORIENT model can be successfully explained. Two significant electron flux enhancement events observed by Van Allen Probes during the storm interval of 17 to 18 March 2013 and non storm interval of 19 to 20 September 2013 are investigated using the DeepSHAP method. The results show that the feature importances calculated from the purely data driven ORIENT model identify physically meaningful behavior consistent with current physical understanding.Comment: Under revie

    Nonlinear Landau resonant interaction between whistler waves and electrons: Excitation of electron acoustic waves

    Full text link
    Electron acoustic waves (EAWs), as well as electron-acoustic solitary structures, play a crucial role in thermalization and acceleration of electron populations in Earth's magnetosphere. These waves are often observed in association with whistler-mode waves, but the detailed mechanism of EAW and whistler wave coupling is not yet revealed. We investigate the excitation mechanism of EAWs and their potential relation to whistler waves using particle-in-cell simulations. Whistler waves are first excited by electrons with a temperature anisotropy perpendicular to the background magnetic field. Electrons trapped by these whistler waves through nonlinear Landau resonance form localized field-aligned beams, which subsequently excite EAWs. By comparing the growth rate of EAWs and the phase mixing rate of trapped electron beams, we obtain the critical condition for EAW excitation, which is consistent with our simulation results across a wide region in parameter space. These results are expected to be useful in the interpretation of concurrent observations of whistler-mode waves and nonlinear solitary structures, and may also have important implications for investigation of cross-scale energy transfer in the near-Earth space environment

    Knot undulator to generate linearly polarized photons with low on-axis power density

    Full text link
    Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method

    NIST 2007 Language Recognition Evaluation: From the Perspective of IIR

    Get PDF
    PACLIC / The University of the Philippines Visayas Cebu College Cebu City, Philippines / November 20-22, 200

    Evaluating the performance of empirical models of total electron density and whistler-mode wave amplitude in the Earth’s inner magnetosphere

    Get PDF
    Empirical models have been previously developed using the large dataset of satellite observations to obtain the global distributions of total electron density and whistler-mode wave power, which are important in modeling radiation belt dynamics. In this paper, we apply the empirical models to construct the total electron density and the wave amplitudes of chorus and hiss, and compare them with the observations along Van Allen Probes orbits to evaluate the model performance. The empirical models are constructed using the Hp30 and SME (or SML) indices. The total electron density model provides an overall high correlation coefficient with observations, while large deviations are found in the dynamic regions near the plasmapause or in the plumes. The chorus wave model generally agrees with observations when the plasma trough region is correctly modeled and for modest wave amplitudes of 10–100 pT. The model overestimates the wave amplitude when the chorus is not observed or weak, and underestimates the wave amplitude when a large-amplitude chorus is observed. Similarly, the hiss wave model has good performance inside the plasmasphere when modest wave amplitudes are observed. However, when the modeled plasmapause location does not agree with the observation, the model misidentifies the chorus and hiss waves compared to observations, and large modeling errors occur. In addition, strong (>200 pT) hiss waves are observed in the plumes, which are difficult to capture using the empirical model due to their transient nature and relatively poor sampling statistics. We also evaluate four metrics for different empirical models parameterized by different indices. Among the tested models, the empirical model considering a plasmapause and controlled by Hp* (the maximum Hp30 during the previous 24 h) and SME* (the maximum SME during the previous 3 h) or Hp* and SML has the best performance with low errors and high correlation coefficients. Our study indicates that the empirical models are applicable for predicting density and whistler-mode waves with modest power, but large errors could occur, especially near the highly-dynamic plasmapause or in the plumes

    Lnc-PKD2-2-3/miR-328/GPAM ceRNA Network Induces Cholangiocarcinoma Proliferation, Invasion and 5-FU Chemoresistance

    Get PDF
    PurposeOur previous study observed that long non-coding RNA PKD2-2-3 (lnc-PKD2-2-3) is related to advanced tumor features and worse prognosis in cholangiocarcinoma (CCA). Then, this study aimed to further explore the linkage between lnc-PKD2-2-3, miR-328, and GPAM, as well as their effects on regulating CCA viability, mobility, and chemosensitivity.MethodsLnc-PKD2-2-3, miR-328, and GPAM expression in 30 pairs of CCA tumor and adjacent tissues, as well as in CCA cell lines, were determined. Two CCA cell lines (HuCCT1 and TFK1) were transfected by lnc-PKD2-2-3 overexpression plasmid, lnc-PKD2-2-3 siRNA, miR-328 inhibitor, and GPAM siRNA alone or in combination, followed by cell proliferation, apoptosis, invasion, and 5-FU chemosensitivity detection. Besides, xenograft mice were established for validation.ResultsLnc-PKD2-2-3 and GPAM were higher, whereas miR-328 was lower in CCA tissues versus adjacent tissues and also in CCA cell lines versus control cells; meanwhile, they were correlated with each other (all P <0.05). Lnc-PKD2-2-3 knockdown decreased CCA cell proliferation, invasion, and increased apoptosis (all P <0.05), but lnc-PKD2-2-3 overexpression exhibited the opposite and weaker effect. MiR-328 knockdown induced CCA cell proliferation and invasion and also attenuated the effect of lnc-PKD2-2-3-knockdown in these functions (all P <0.05). Subsequently, GPAM knockdown reduced CCA cell proliferation and invasion and also weakened the effect of miR-328-knockdown in these functions (all P <0.05). Additionally, lnc-PKD2-2-3 positively regulated GPAM while negatively regulating miR-328. MiR-328 negatively modified GPAM in CCA cells. Luciferase gene reporter assays verified that lnc-PKD2-2-3 directly bound miR-328 and miR-328 directly bound GPAM. Finally, the lnc-PKD2-2-3/miR-328/GPAM network also regulated the 5-FU chemosensitivity of CCA cells. In vivo experiments further revealed that lnc-PKD2-2-3 overexpression promoted tumor volume and weight but repressed tumor apoptosis in xenograft mice; meanwhile, it increased GPAM expression but decreased miR-328 expression (all P <0.05). Conversely, lnc-PKD2-2-3 knockdown exhibited the opposite effects (all P <0.05).ConclusionLnc-PKD2-2-3/miR-328/GPAM ceRNA network promotes CCA proliferation, invasion, and 5-FU chemoresistance
    • …
    corecore